Fermi Isospectrality of Discrete Periodic Schrödinger Operators with Separable Potentials on $$\mathbb {Z}^2$$

نویسندگان

چکیده

Given two coprime numbers $$q_1$$ and $$q_2$$ , let $$\Gamma =q_1\mathbb {Z}\oplus q_2 \mathbb {Z} $$ . Let $$\Delta +X$$ be the discrete periodic Schrödinger operator on $$\mathbb {Z}^2$$ where is Laplacian $$X:\mathbb {Z}^2\rightarrow {C}$$ -periodic. In this paper, we develop tools from complex analysis to study isospectrality of operators. We prove that if -periodic potentials X Y are Fermi isospectral both $$X=X_1\oplus X_2$$ $$Y=Y_1\oplus Y_2$$ separable functions, then, up a constant, one dimensional $$X_j$$ $$Y_j$$ Floquet isospectral, $$j=1,2$$ This allows us for any non-constant real-valued potential, variety $$F_{\lambda }(V)/\mathbb irreducible $$\lambda \in which partially confirms conjecture Gieseker, Knörrer Trubowitz in early 1990s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

Schrödinger operators with oscillating potentials ∗

Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.

متن کامل

On discrete Schrödinger operators with stochastic potentials

This is a version of the well-known Anderson’s model. In the late 1950’s, Phil Anderson predicted that random impurities could turn conductors into insulators. In mathematical terms, he predicted that random potentials should lead to pure point spectrum with rapidly decreasing eigenfunctions — at least for large disorders. Instead of random potentials, one considers here potentials given in ter...

متن کامل

Convergence Analysis of Planewave Expansion Methods for 2D Schrödinger Operators with Discontinuous Periodic Potentials

In this paper we consider the problem of computing the spectrum of a Schrödinger operator with discontinuous, periodic potential in two dimensions using Fourier (or planewave expansion) methods. Problems of this kind are currently of great interest in the design of new optical devices to determine band gaps and to compute localised modes in photonic crystal materials. Although Fourier methods m...

متن کامل

Schrödinger Operators with Local Interactions on a Discrete Set

Spectral properties of 1-D Schrödinger operators HX,α := − d 2 dx2 + ∑ xn∈X αnδ(x − xn) with local point interactions on a discrete set X = {xn}n=1 are well studied when d∗ := infn,k∈N |xn − xk| > 0. Our paper is devoted to the case d∗ = 0. We consider HX,α in the framework of extension theory of symmetric operators by applying the technique of boundary triplets and the corresponding Weyl funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2022

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-022-04575-8